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Abstract

We consider some iterative methods for problems of elasticity theory based on the idea of
substructuring. Suppose that the given complicated domain can be decomposed into two or
more simple subdomains for which solutions are available. In contrast to customary methods of
substructuring, we allow subdomains to overlap, or one to be inside another. The given domain
can be formed in a rather flexible way as a union, product, or relative Complement (difference)
of subdomains. We study several iterative schemes of patching solutions for subdomains, to
give the solution of the required problem. Convergence is established by presenting the
operator of an iterative procedure as a product of two or more projectors. We then apply one of
the algorithms for a problem of machining distortion as a result of residual stresses.

1. Introduction

We seek the solution to the system of linear elasticity equations

(X + x) grad div u + Au = q (1)

for a domain G = G1 + G2, as shown in Fig. la. In equation (1), u is the unknown vector of
displacements, X and p are Lame's constants and the vector function q represents mechanical
or thermal loading. Let us consider the following algorithm. Solve equation (1) for the domain
GI, assuming arbitrary displacements u() at the surface S, and with the given boundary
conditions at S. The solution to this problem gives the vector u() everywhere in the domain
G1, including S. Take these as boundary values and solve (1) for the domain G2, with
conditions on S2 as they are given in the problem. This solution provides us with boundary
values u(') on S, which can be used for the next iteration in G1. Then the procedure is
repeated. This algorithm was initially suggested by Shwarz as a proof of existence of the
solution to the harmonic equation for a multiply-connected domain [1]. It is now recognized [2]
as a numerical procedure for a boundary-value problem, if the domain is constructed from
simple subdomains, for which solutions are available. The convergence of the method, when
displacements on the boundary are given, has been proven by S.L. Sobolev [3]. The method also
has been applied to problems of elasticity theory with a given traction vector on the boundary
[4-6]. In the latter version, continuity of the traction vector (not displacement) across surfaces
SI and S' is preserved. It was indicated in both cases that a modification of the method can be
used for a domain which is an intersection of simple subdomains. Applications of the method
to problems of elastic stability were made in [7]. In the present paper, we show that both
versions of the method, [3] and [4-6], converge for any customary combination of boundary
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Fig. 1. Decomposition of the given domain into subdomains.

conditions. For example, on some portions of the boundary displacements may be specified,
while some other portions are elastically supported, or have specified tractions. We also
consider some new modifications of the procedure. Convergence in energy is established by
presenting the operators of the procedure as a product of two or more operators of orthogonal
projections (projectors).

We also demonstrate one of the algorithms on an example, related to a problem of
machining distortion.

2. Algorithm of 131 with generalized boundary conditions

2.1. Preliminary remarks

Suppose that on some portion of the boundary, A l, displacements are given,

ui =fi, i=1,2,3, (2)

while on another portion of the boundary, A2, tractions are specified,

oaijn j = ti, i, j = 1, 2, 3, (3)

and the remaining portion of the surface S U S2, A3, is elastically supported,

aijnj + Dijuj = 0, i, j = 1, 2, 3. (4)

In these equations, aij is the stress tensor, nj the unit vector normal to the surface, and Dii the
nonnegative stiffness matrix of the elastic support.

We will use the known result that in linear problems the specific form of right-hand sides of
equations does not influence the convergence of an iterative scheme. Therefore, it is possible to
assume q, fi and t in equations (1-3) equal to zero. If started with some initial perturbation
for the homogeneous problem, the process tends towards zero, then for the given non-homoge-
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neous problem the process converges to the required solution. We study convergence, using the
following scalar product and norm:

(u, v)=faiji(u)e j(v)dG+ uDkVk dS
G A3

= f oij(v)eij(u) dG + fA iDikuk dS, i, j, k = 1, 2, 3, (5)

U 12 = (u, U). (6)

We can see that the norm defined by (5,6) is the doubled potential energy of elastic
deformation of the system, including potential energy of elastic supports on A3. Symmetry of
expression (5) follows from reciprocity of energy and can be verified directly by integration by
parts.

2.2. Union of subdomains

The procedure suggested in [3].can be represented as the product of two operators Pi and P2,
which are defined as follows.

For operator P1:
Plu = u in G2 - G1 , Plu- = u+ on S, Pu satisfies equation (1) in G1, and boundary conditions
(2-4) on S. Superscripts "-" and "+" respectively denote values on the left- and right-hand
sides of the surface.

For operator P2:
P2

u = u in G - G2 , P2
u - = u+ on S2', P2u satisfies equation (1) in G2 , and boundary conditions

(2-4) on S2. Then the iterative procedure can be described as

U
( n + l )

= Pu(n = P2Pl
u ( n ) .

(7)

THEOREM 1. Procedure (7) is convergent in the energy norm (6). The burden of proof is on the
following lemma.

LEMMA 1. Operators P1 and P2 are projectors in norm (6).

Proof: Consider a set of vector functions {gi }, generated by operator P1. It is sufficient to show
that for any u and g

(u - Plu, gi) = 0. (8)

U

Fig. 2. Geometrical illustration of condition (8).
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This condition is geometrically illustrated in Fig. 2 which shows that an operator P is a
projector onto axis x if and only if u - Pu is perpendicular to a g directed along x.

Using integration by parts, the scalar product (5) can be rewritten as

(u, v) f% u dG+ f (u) viu dG + f d a(u) ni a i dS

+ f aij(u)nv i dS + f (aij(u)- ao,(u) )njvi dS

+ (aij(u) + - ij(u) )njvi dS + uiDjv, dS. (9)

There are two unit normal vectors on S[ U S':

n+ = -n- (10)

In (9) and below we use only one of them, n+, and omit the superscript. The integral in the
domain G vanishes since equilibrium equations

aijj = O (11)

are satisfied for each subdomain. The integrals along surfaces Al and A2 equal zero because of
homogeneous boundary conditions corresponding to (2) and (3). The two integrals along A3
cancel, as can be seen from (4). Then expression (9) becomes

(u, ) = (i(u) - a(u ) )nvi as + f((u)S-o(u ) ) n v ~ dS. (12)

This expression can be used to verify (8), giving

(u - Plu, g)= (aij (g)+ -i i(g ) ) n i[ ui -(Plu) i] dS + fs (i(g)+

-(aij(g) )nj[ui - (Piu)i ] dS. (13)

The first integral in (13) is equal to zero because, by the definition of Plu,, (Plu)i = 0 on S.
The second integral is equal to zero, since g is continuous on S together with all derivatives
and therefore, aij(g)+ - i(g ) - = 0. Equation (8) is verified and P1 is indeed a projector. The
same statement is true with respect to operator P2. Theorem 1 is now a consequence of
properties of projectors [8].

2.3. Product of subdomains

We will now consider an algorithm for the intersection of the subdomains, as shown in Figure
lb. Let boundary conditions be of the form (2) on S + S2. Start the solution of (1) for the
domain G1. We can take any combination of homogeneous conditions corresponding to (2-4)
on S1, which is convenient for calculations, since this boundary is obtained artificially by
expanding the given domain and is not needed for the actual solution. The resulting vector



Iterative methods based on domain decomposition

function u() most likely will not coincide with that given on S2'. Take the difference (error)
f,(S') - u?0 )(S2) as the boundary value for the domain G2 and solve equation (1) with q = 0
and an arbitrary combination of homogeneous conditions (2-4) on S2. This corrective solution
causes conditions on S to be satisfied, but there will be some error on S{. Take this error as
the boundary condition for the problem in the domain G1, etc. For the study of convergence we
consider the homogeneous equations with some initial perturbations. We then notice that the
consequent iterations may differ only in sign from those obtained in the previous section for
Gt U G2 , and therefore both versions are convergent.

2.4. Relative complement of domains

Let us consider now the domain, as shown in Fig. c with arbitrary combination of conditions
(2-4) on S and prescribed displacements on S. Iterations are constructed as follows: solve
equation (1) in G1 with given boundary conditions on S and displacements ui=fi chosen
arbitrarily on SI. Most likely, this solution will not give the needed displacements on S2. Take
the error on S as the boundary value for the homogeneous problem in the domain G2 and
obtain corrections for boundary conditions on S{, etc. Again, we can take any combination of
homogeneous conditions on S2. For the corresponding homogeneous problem with initial
perturbation the algorithm can be described as

u(+l) = (I - P2 ) P1
u (n) (14)

where I is the identity operator and P, P2 were described before. Therefore, I-P 2 is a
projector, and the process is convergent in energy.

3. Algorithm of 14-61 with generalized boundary conditions

The algorithms considered here are similar to those in the previous section. The difference is
that now we preserve continuity of traction vector ijnj on the surfaces S + S2' rather than
continuity of displacements. We will use notations Q, and Q2 for the corresponding operators.

THEOREM 2. Operators Q1 and Q2 are projectors, and therefore algorithm u( +l ) = Q2Qu(n) is
convergent in energy.

Proof: It is sufficient to show that

(u, Q1u) = (Q lu, Q1u). (15)

Using derivations similar to those of (9-11), and taking into account that the normal and
tangential stresses are now continuous across S{ U S2, we obtain instead of (13):

(u, v) = f j(u)nj(v - vf) dS. (16)

Then

(Qtu, Qu)- = f ai(Qlu) n[(Qiu)/ - (Qlu)j ] dS + f (Qlu)nj [(Qlu)/ - (Qlu) ] dS.

(17)
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By definition of the operator Q1,

aju(Qlu)nj= j(u)n i on S;, (18)

(Qlu); = (Qlu)7 on S. (19)

Therefore

(Q1u, Qlu)= faij,(u)nj [(Qlu)1 - (Qlu) ] dS. (20)

On the other hand

(u, Qu) = f aj (u)nj [(Qlu)' - (Qlu) ] dS + f ai (u) n [(Qlu)j: - (Qlu) ] dS. (21)

The second integral in (21) vanishes because of (19). Then comparison (20) and (21) gives (15).
In a similar manner, convergent algorithms for domains G n G2 and G - G2 can be

constructed.

4. Examples

4.1. Circular segment on a rigid foundation

To illustrate some features of the treated algorithms, we consider an example shown in Fig. 3a.
We assume that the foundation is smooth (no tangential stresses), and that no separation is
permitted. These boundary conditions can be achieved by presenting the problem as shown in

p

h

(a)

Si

Axis of symmetry

(b) (c)

Fig. 3. Circle segment on a rigid smooth foundation. A. Given scheme. B. Decomposition into sum of subdomains. C.
Decomposition into product of subdomains.
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Table 1. Number of iterations for different overlapping in Fig. 3b (sum of the domains).

h/R in Fig. 3a 1.8 1.6 1.4 1.2

Number of iterations 15 7 4 2

1.2

0.8

0.4

0.0
0 0.5 1.0

x

R

Fig. 4. Convergence of contact pressure for h /R = 1.4.

Fig. 3b, using symmetry. The problem is described in terms of a stress function governed by the
biharmonic equation. For each subdomain, the solution is

(22)f= ( AOr + Brn+ 2 ) COS nO
n=O

where coefficients A and B, are chosen to satisfy the given boundary conditions. The
procedure for each subdomain seems to be straightforward and we omit it. We start the
iteration described in Section 3 with some arbitrary stress distribution on S', equilibrating the
given force P. We chose to put the force P at the mid-point of S'. Iterations were aborted when
corrections for stresses on S2' in the current iteration were less then some prescribed fraction
(1% in our analysis) of total stresses. The number of terms in (22) was taken as 100. Table 1
shows, as we should expect, that the convergence improves, as the overlapping portion of the
subdomains increases. Figure 4 shows the convergence of the contact stress distribution for
h/R = 1.4. Apparently, we cannot use the representation in Fig. 3b to obtain the solution for
h/R < 1. But in this case, we can use the algorithm for the intersection of subdomains, as
shown in Fig. 3c. Results for different overlapping are given in Table 2. Again, convergence
improves, as overlapping of subdomains increases. The contact pressure at the mid-point is
shown in Fig. 5 where the portion of the curve for h/R < 1 was obtained with the algorithm for

Table 2. Number of iterations for different overlapping in Fig. 3c (intersection of the domains)

h/R in Fig. 3a 0.2 0.4 0.6 0.8

Number of iterations 4 3 3 2
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Table 3. Number of iterations for different overlapping in Fig. 6.

h/R in Fig. 6 0.25 0.5 0.75 1.0 1.25 1.5 1.75

Number of iterations 2 4 5 6 9 10 12

5.0

boa 2.5

o 1 2
h/R

Fig. 5. Contact pressure of mid-point as a function of h/R.

the intersection of the subdomains, while for the portion h/R > 1 we used the algorithm for the
unity of subdomains.

4.2. A problem of machining distortion

Suppose, residual stresses were introduced in a part in the process of manufacturing: quench-
ing, for example. Then during machining some distortion of the part is observed. To visualize
this, one notes that machining releases the residual tractions on the newly formed surfaces,
which is mechanically equivalent to application of these reversed tractions to the remaining
portion of the part. Machining is also used for experimental verification of analytically
obtained residual stresses. Strain gauges are placed at selected points of the surface, and
deformations are measured, while some portions of material are removed. These deformations
are compared with those obtained on the basis of modeled residual stresses. Consider the
following example. It was found [9] that the residual stresses in a long cylinder can be
approximated by

r= 872 cos(rr/2R) N/cm2

with other stresses given by

d= dr(r r),

(23)

(24)

(25)

Obtained from
s

A A _" "

T'=0.
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v = 0.3

R.

A

Fig. 6. Machining distortion of a cylinder with residual stresses.

0.16

@ 0.08

0.00
0 1

h/R
2

Fig. 7. Predicted deformation at point A of Fig. 6 during machining.

As illustrated in Fig. 6, we are interested in the development of deformation E. at point A as we
gradually remove material. The remaining domain can be represented as an intersection of two
circles with the radius of one of them taken sufficiently large. Using the results (22) for a circle
and the algorithm of Section 3 for the intersection of subdomains, the graph in Fig. 7 was
obtained. Table 3 again shows that the algorithm used becomes more efficient as the
overlapping area increases.

5. Conclusion

Efficiency of the considered algorithms depends on particular combination of boundary
conditions and geometry. However, some general remarks can be made. It can be shown as in
[7] that for the cases of union or product of subdomains, convergence should improve when
overlapping increases. This conclusion is supported by the examples discussed in Section 4. For
the case of difference of subdomains, the opposite is true.

We also note that the number of subdomains can be more than two, but the discussed
algorithms are most efficient when the number of subdomains is small.

Comparing with other algorithms available, we emphasize that the suggested method is
intended for use when the given domain is too complicated to be handled as the 'whole', while
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reasonably efficient solutions for subdomains are available. It is immaterial for the presented
algorithm how specifically the equations for the subdomains will be solved. Suppose, for
example, that the expressions

u(Gi) = CijHj (x, y, z) (26)

are available for each subdomain. Suppose also, that each term of (26) meets at least kinematic
boundary conditions. Then the Ritz procedure can be employed for the subdomains, and the
solutions can be patched by the suggested algorithm. This approach is advantageous when the
expression of form (26) for the whole domain is unknown. Finally, it is not necessary that all
subdomains have to be solved by the same method. The Ritz method can be used for the first
subdomain, the Galerkin's for the second, finite-element method for the third, etc.
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